Comparison between Eubacteria and Archaebacteria

Eubacteria

Archaebacteria: Purple Sulphur Bacteria

Monerans can be classified into three major groups: the <u>eubacteria</u> (True bacteria), cyanobacteria (blue green algae) and archaebacteria (ancient bacteria). The eubacteria are the commonly encountered bacteria in soil, water and living in or on larger organisms, and include the Gram positive and Gram negative bacteria.

The <u>archaebacteria</u> grow in unusual environments such as salt brines, hot springs and in the ocean depths. They are a group of most primitive prokaryotes which are believed to have evolved immediately after the evolution of the first life. They are of three types:-methanogens, Halophiles and thermoacidophilies.

No	Character	Eubacteria	Archaebacteria
1.	Habitat	Present every where	Mostly inhabit in extreme environmental conditions.
2	Cell wall	Peptidoglycan with muramic acid.	Variety of types, no muramic acid.
3	Membrane lipids	Ester linked, straight - chained fatty acids are present containing L- glycerol phosphate.	Ether linked branched aliphatic chains are present containing D- glycerol phosphate.
5	DNA Dependent RNA polymerase	Simple subunit pattern	Complex subunit pattern similar to eukaryotic enzyme
6	tRNA	Thymine present in most tRNAs N- formylmethionine (f met) carried by initiator tRNA	No thymine in T _{\u03c0} C arm of tRNA methionine (met) carried by initiator tRNA
7	Intron	Introns are absent	Introns are present

Difference Between: Eubacteria and Archaebacteria

Similarities Between Eubacteria and Archaebacteria

<u>Bacteria</u> are of two groups eubacteria and <u>archaebacteria</u>. The <u>eubacteria</u> are commonly found in soil, water and living in or on larger organisms include the <u>gram positive</u> and the <u>gram negative</u> and the cyanobacteria. Archae bacteria are a group of ancient bacteria. They are supposed to be originated just after the origin of life on earth.

Archaebacteria: Cell structure

The basic cell structure is same except capsules are rare in *Archae*. Genetic material is found free in the cytoplasm similar to that Eubacteria.

Structure	Function
Plasma membrane	Selectively permeable barrier, mechanical boundary of cell, nutrient and
	waste transport, location of many matabolic processes(respiration,
	photosynthesis), detection of environmental cues for chemotaxis.
Periplasmic space	In Gram negative bacteria, contains hydrolytic enzymes and binding
	proteins for nutrient processing and uptake; in gram positive bacteria
	and archael cells, may be smaller or absent.
Cell wall	Provides shape and protection from osmotic stress
<u>Ribosomes</u>	Protein Synthesis
Nucleoid	Localization of genetic material (DNA)
Gas vacuole	Buoyancy for floating in aquatic environments
<u>Flagella</u>	Swimming motility.
Endospore	Survival under harsh environmental conditions; only observed in
_	Bacteria.
Capsules and slime	Resistance to phagocytosis, adherence to surfaces; rare in the Archae.
layers	
Fimbriae and pili	Attachment to surfaces, bacterial conjugation and transformation,
	twitching and gliding motility.

Archebacterial overall structure is similar to Eubacteria, but differs chemically.